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Abstract. Chain rules are maximally chaotic CA rules that
can be constructed at random to provide a huge number of en-
cryption keys — where the the CA is run backwards to encrypt,
forwards to decrypt. The methods are based on the reverse al-
gorithm and the Z-parameter [5].

1 The CA reverse algorithm and basins of
attraction

In the simplest cellular automata [4], each cell in a ring of cells updates its
value (0,1) as a function of the values of its k neighbours. All cells update
synchronously — in parallel, in discrete time-steps, moving through a
deterministic forward trajectory. Each “state” of the ring, a bit string,
has one successor, but may have multiple or zero predecessors.

A book, “The Global Dynamics of Cellular Automata” [5] published
in 1992 introduced a reverse algorithm for finding the pre-images (pre-
decessors) of states for any finite 1d binary CA with periodic bound-
ary conditions, which made it possible to reveal the precise topology of
“basins of attraction” for the first time — represented by state transition
graphs — states linked into trees rooted on attractor cycles, which could
be drawn automatically, as in Fig. 1. The software was attached to the
book on a floppy disk — the origin of what later became DDLab [12].

As state-space necessarily includes every possible piece of informa-
tion encoded within the size of its string, including excerpts from Shake-
speare, copies of the Mona Lisa, and one’s own thumb print, and given
that each unique string is linked somewhere within the graph according
to a dynamical rule, this immediately suggested that a string with some
relevant information could be recovered from another string linked to
it in some remote location in the graph, for example by running back-
wards from string A (the information) to arrive after a number of time
steps at string B (the encryption), then running forwards from B back



to A to decrypt (or the method could be reversed) — so here was a new
approach to encryption where the rule is the encryption key.

Gutowitz patented analogous methods using dynamical systems, CA
in particular [2], but these are different from the methods I will de-
scribe, where its crucial to distinguish a type of CA rule were the graph
linking state-space has the appropriate topology to allows efficient en-
cryption/decryption.

Fig. 1. Three basins of attraction with contrasting topology, n=15, k=3. The
direction of time flows inward towards the attractor, then clockwise. One com-
plete set of equivalent trees is shown in each case, and just the Garden-of-
Eden (leaf) states are shown as nodes. Data for each is provided as follows:
attractor period=p, volume=wv, leaf density=d, longest transient=t, max in-
degree=Praz.

topleft: rule 250, Zief¢=0.5, Zright=0.5, too convergent for encryption, p=1,
v=32767, d=0.859, t=14, Pp..=1364,.

topright: rule 110, Zier+=0.75, Zyignt=0.625, too convergent for encryption,
p=295, v=10885, d=0.55, t=39, Pq-=30,.

bottom: rule 30, a chain rule, Zicf+=0.5, Zrignt=1, OK for encryption, p=1455,
v=30375, d=0.042, t=321, Ppaz=2,




2 The Z-parameter

Many fascinating insights emerged during the genesis of [5], among them
a refinement of Langton’s A-parameter [3]. This “Z-parameter” arose
directly from the reverse algorithm, which computed the next unknown
bit (say, from left to the right, giving Zj.r,) of a partly known pre-image,
or conversely from right to left. The Z-parameter, by analysing just the
lookup-table (the CA rule) gave the probability that this next bit was
uniquely determined, and being a probability the value of Zj.r; ranged
between 0 and 1. The converse direction gave Z,;gn¢, and the greater of
the two was deemed to be the final Z-parameter.

Z did a good job of predicting the bushiness or branchiness of sub-
trees in basins of attraction — their typical in-degree (or degree of pre-
imaging), which related to the density of end states without pre-images
(Garden-of-Eden states) but lets call them “leaves” for short. A branchier
tree (low Z) has more leaves, and shorter branches (transients) because
all those pre-images and leaves use up a finite state-space. Conversely,
sparsely branching trees (high Z) have fewer leaves, and longer branches.

Figure 1 gives three examples with contrasting topology.

Low Z, a low probability that the next bit was determined, meant
the next bit would probably be both 0 and 1, equally valid, so more
pre-images and branchiness, or that there was no valid next bit, more
leaves. High Z, a high probability that the next bit was determined,
meant it would probably be either 0 or 1, not both, so fewer pre-images,
less branchiness, but more chance of a valid pre-image, so fewer leaves.

This nicely tied in with the behaviour of CA when run forward. Low
Z, high branchiness results in ordered dynamics. High Z, low branch-
iness, results in disordered dynamics (chaos), behaviour that could be
recognised subjectively, but also by various objective measures, in par-
ticular “input entropy” [6,7]. The entropy stabilises for both order (at
a low level) and chaos (at a high level); entropy that does not stabilise
but exhibits variance over time is a signature of complexity, with inter-
mediate Z.

3 Limited pre-image rules

Rules in general, even with high values of Z<1, can generate huge num-
bers of pre-images from typical states, which would slow down the reverse
algorithm. A branchy (convergent) graph topology has many leaves. As
strings become larger, the leaf density increases taking up almost all of
state-space, as in Fig. 2 (rule 250).
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Fig. 2. A plot of leaf (Garden-of-Eden) density with increasing system size,
n= 5 to 20, for the three rules in Fig. 1. The measures are for the basin of
attraction field, so the entire state-space. For rule-space in general, leaf density
increases with greater n, but for chain rules leaf density decreases.

These leaf states cannot be encrypted by running backward. The al-
ternative, running forwards to encrypt, then backwards to decrypt, poses
the problem of selecting the correct path out of a multitude of pre-image
branches at each backward time-step. Running forward continually loses
information on where you came from; CA are dissipative dynamical sys-
tems.

But there is an solution! When Z=1, however large the size of the
lattice, the number of pre-images of any state is strictly limited. These
Z=1 rules come in two types [5] as follows, (note that k is the effective-k,
some rules have redundant inputs [5]),

— “two-way limited pre-image rules”: Zj.r; and Z,;4n¢ both equal one,
where the in-degree must be either 25=1 or zero,

— “one-way limited pre-image rules”: Zjcp=1 or Z,;gn,=1, but not
both, where the in-degree must be less than 2¢71.

Limited pre-imaging (in-degree) appears to produce a promising topol-
ogy on which to implement encryption, because we would usually need
a long string to encode information, but the “two-way” Z=1 rules still
suffer from some of the same problems as rules in general, too branchy
and a high proportion of leaves.

“One-way” Z=1 rules on the other hand, seem to provide the ideal
graph topology. They have an unexpected and not fully understood prop-
erty: that although the maximum number of pre-images (P4 ) of a state



must be less than 2¥~1, experiment shows that the actual number is usu-
ally much less, and decreases as the system size increases; consequently
the leaf-density also decreases as in Fig. 2 (rule30).

For large strings of 1000+, P,,,4,.=1, except for very rare states where
the in-degree=2 in transients, or where transients joint the attractor
cycle, which may be extremely long. However, this branching is not a
problem when running forward to decrypt, because forward paths con-
verge, and the original pattern will be found. Because the vast majority
of state-space occurs in long chains, I renamed the “one-way limited
pre-image rules” — “chain-rules”.

In Figs. 3 and 4, where k=7, P,,q, must be less than 26=64, but the
basin of attraction field (for a chain rule constructed at random) has
Pra=5 and usually less, as shown in the in-degree histogram Figs. 3
(right), though there is a small basin where Py,q,=18.

As n increases Py, 4, decreases. In Fig. 5 where n=400, P,,,,=2, but
97% of states have an in-degree of one. As n increases further, in-degrees
of 2, and leaves, become exceedingly rare, becoming vanishingly small in
the limit.
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Fig.3. left: The basin of attraction field of a chain rule, showing
all 9 basins of attraction (state transition graphs) for the k=7 rule
(hex)879ac92e2b44774b786536d1d4bb88b41d. Note there is a tiny attractor
(top left) consisting of just one state, all-Os; the last basin (bottom right)
has the all-1s point attractor. The chain rule (Zjc5:=0.59, Zignt=1) was con-
structed at random. The string length n=17, state-space=2'"=131072, leaf
density=0.345, P,, for each basin of the 9 basins is [1,5,5,5,3,4,4,3,18].
right: The in-degree histogram, from 0 to 5, showing in-degree=1 as the most
abundant.




Fig. 4. A detail of the largest basin in Fig. 3, attractor period=357, basin vol-
ume=91868 70.1% of state-space, leaf density=0.345, max levels=119, P,,,=5.

Fig. 5. The subtree of a chain rule, n=400, where the root state is shown in 2d
(20x20), with the same chain rule as in Figs. 3 and 4. Backwards iteration was
stopped after 400 time-steps. The subtree has 3346 states including the root
state. There are 109 leaves (leaf density = 0.0326). Pper=2 and the density
of these branching states is 0.035.

4 Constructing chain rules at random

The procedure for finding the Z-parameter [5-7] (its first approximation)
from a rule-table (lookup-table) is as follows: Consider pairs of neigh-
bourhoods that differ only by their last right bit, so the k-1 bits on the
left are the same. Then look at the outputs of these pairs of neighbour-
hoods in the rule-table to see if they are the same (00 or 11) or different
(01 or 10). Zjcy¢ is the fraction of different pairs in the look-up table. If
all the pairs are different then Zjcs1=1. Z,ign+ is given by the converse
procedure.



There are refinements if effective-k in parts of the rule-table is less
than k, but we will not bother with that because the pairs procedure
gives the most chaotic dynamics.

To assign a chain rule at random, first pick Zjcf; or Z,ign+ at random,
then randomly assign different pairs of outputs (01 or 10) to the pairs
of neighbourhoods defined above. Check the Z-parameter (with the full
algorithm). If Zjc54=1 or Z,;gns=1 but not both, we have a chain rule.

From experiment, the lesser value should not be too low, 0.5 or
more [9]. This is to avoid a gradual lead-in and lead-out of structure
in the space-time pattern when decrypting. Ideally the message, picture,
or information, should pop out suddenly from a stream of chaos then
rescramble quickly back into chaos, as in Fig. 7. This is accompanied by
a lowering blip in the high input-entropy, the duration of the blip needs
to be minimised to best “hide” the message.

DDLab [12] can assign a chain at random as above, instantaneously,
with a key press, see the DDLab manual [9], section 16.7 and elsewhere.

5 How many chain-rules?

How many chain-rules, C, are there in a rule-space S = 227

The number of ways (say Zj.sr=1) “pairs” can be assigned is 22" = /3.
Adding the same for Zj. =1, the number of chain rules C:2(22k71), but
we must subtract the number of rules where both Zj.r;=1 and Z,;gni=1,

which is about 22}672, because “pairs” need to be assigned to half of the
rule-table, and their compliment to the other half. Subtracting also cases
where the lesser value is less than 0.5, a round estimate for the number
of acceptable chain rules is 22° ', or the square root of rule-space.

This is sufficiently large to provide an inexhaustible supply of keys,
for example for k=>5: 216, k=6: 232, k=7 :264  k=8: 2!28 etc. A chain-rule
constructed randomly in DDLab will very probably be a unique key.

6 Encryption/decryption with chain rules

The CA reverse algorithm is especially efficient for chain rules, because
the rules-tables are composed purely of “deterministic permutations” —
they lack the “ambiguous permutations” that can slow down the reverse
algorithm [5].

Many experiments have confirmed that chain rules make basin of
attraction topologies that have the necessary properties for encryption.
Nearly all states have predecessors and are embedded deeply within long
chain-like chaotic transients.



Fig. 6. A 1d pattern is displayed in 2d (n=1600, 40x40); the “alien” seed was
drawn with the drawing function in DDLab. The seed could also be an ASCII
file, or any other form of information. With a k=7 chain rule constructed at
random, and the alien as the root state, a subtree was generated with the
CA reverse algorithm; note that the subtree did not branch, and branching is
highly unlikely to occur. The subtree was set to stop after 20 backward time-
steps. The state reached is the encryption. This figure was taken from [8,10].

There will still be leaves, and states close to the leaves, patterns that
could not be encrypted by that particular chain rule because a backwards
trajectory would just stop prematurely. However, for big binary systems,
like 1600 as in Figs. 6 and 7, the state-space is so huge, 2'6%0, that to
stumble on an unencryptable state would be very unlikely, but if it were
to happen, simply construct a different chain rule.

Encryption/decryption has been available in DDLab since about 1998.
To encrypt, select a chain rule (and save it). Select a large enough 1d lat-
tice (which can be shown in 2d). Select the information to be encrypted
by loading an ASCII file (for text), or a DDLab image file as the seed, or
create a picture with DDLab’s drawing function. Select a subtree, and



Fig.7. To decrypt, starting from the encrypted state in Fig. 6 (n=1600,
40x40), the CA with the same rule was run forward by 20 time steps, the
same number that was run backward, to recover the original image or bit-
string. This figure shows time steps 17 to 25 to illustrate how the “alien” im-
age was scrambled both before and after time step 20. This figure was taken
from [8, 10].

set it to stop after say 20 backwards time-steps. The subtree is unlikely
to branch, but if it does, no worries. Save the (encrypted) state reached.
Fig. 6 and 8 show examples.

To decrypt, reset DDLab to run forward. Keep the same rule or
load it. Load the encrypted state as the initial state. If decrypting a
picture, set the presentation for 2d. Run forward, which can be done
with successive key-press to see each time-step at leisure. At the 20th
time-step, the image will pop out of the chaos. To fully observe the
transition, continue stepping forward until the pattern returns to chaos.
There will be some degree of ordering/disordering on either side, as in
Figs. 7 and 9.

7 Generalising the methods to multi-value

In 2003, all functions and algorithms in DDLab were generalised from bi-
nary, v=2 (0,1), to multi-value. The “value-range” v (number of colours)
can be set from 2 to 8, i.e. v=3 (0,1,2), v=4(0,1,2,3), up to v=8 (0,1,2,..7).
This included the reverse algorithm, the Z-parameter, chain-rules, and
encryption. Details of the new algorithms will be written up at a later
date.

Any available value-range can be used for encryption, but for effi-
ciency’s sake, not to waste bits, v=2, v=4 or v=8 are preferable.

The examples in Figs. 8 and 9 shows the encryption of a portrait,
with v=8, k=4, on a 88x88 lattice (n=7744), but as v=8, the size of



Fig.8. A 1D pattern is displayed in 22 (n=7744, 88x88). The “portrait”
was drawn with the drawing function in DDLab. With a v=8, k=4 chain
rule constructed at random, and the portrait as the root state, a subtree was
generated with the CA reverse algorithm. The subtree was set to stop after 5
backward time-steps. The state reached is the encryption.

Fig.9. To decrypt, starting from the encrypted state in Fig. 8 (n=7744,
88x88), the CA with the same rule was run forward to recover the original
image. This figure shows time steps -2 to +7.
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the binary string encoding the lattice is 61052. The v=8 chain rule was
constructed at random; Zjp;=0.4, and Z,;gn:=1. When decrypting, the
portrait pops out suddenly from chaos, but it takes about 50 time-steps
to fully restore chaos. This is because k=4 is a small neighbourhood, and
the chaotic pattern moves into areas of order at its “speed of light”, set
by k.

8 Possible drawbacks

Here are some possible drawbacks of the encryption method.

Chain rules usually result in attractor cycles with very long periods,
though this is relative — the fraction of state-space made up of attractor
cycles is probably small. If a state to be encrypted happens to be on
an attractor cycle, running it backward may arrive at a point where a
transient joins the attractor. In this case the backwards trajectory will
branch.

Note also that there is an effect called “rotational symmetry” (and
also “bilateral symmetry”) that is inescapable in classical CA, where
states with greater symmetry must be downstream of states with lesser
symmetry, or with none [5]. This means that the uniform states, all-Os
and all-1s, must be downstream of all other states in the dynamics, and
the states like 010101.. downstream of states like 00110011.., which are
downstream of the rest, etc. However, these highly ordered states hold
little or no information, so are irrelevant for encryption.

A consequent effect is that “rotational symmetry” must stay constant
in an attractor cycle, so in binary systems each uniform state must be
one of the following: a point attractor; a transient state leading directly
to the other’s point attractor; part of a 2-state attractor with the other.
In multi-value networks things get more complicated.

The key itself (the chain-rule) must be transmitted somehow — and
with perfect accuracy. Noise in transmission of the encryption will spread
during decryption, but only at the “speed of light” depending on k and
the number of forward time-steps, so the process is relatively robust to
this extent.

9 A bit of history

The encryption method described in this paper relies on a number of
ideas first published in 1992 [5] and developed from work started in
about 1988. The reverse algorithm for running 1d CA backwards made
it possible to invent the Z-parameter, to reveal the topology of basins of
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attraction, and begin to study and understand these objects - how they
relate to rule-space.

The “limited pre-image rules” in [5] were renamed “chain-rules” for
brevity in about 1998, but the principle and possibility of encrypting by
running CA backward, decrypting by running forward, using “limited
pre-image rules”, was well know to the authors of [5] at the time of
writing. The method was made to work within DDLab in about 1998.

I've often described this encryption method in talks and lectures,
including live demos of encryption with DDLab in many venues in a
number of countries. The first time for a big audience was at the SFI
summer school in Santa Fe in 1999. Up till now I have written only brief
accounts specifically on this encryption method, both published [9,11]
and unpublished [8,10].

I'm relating this bit of history because I have just now read a new
paper by Gina M. B. Oliviera and others [1], sent to me for review,
presenting their independent discovery of the same encryption method;
except they used a genetic algorithm to evolve the rule-tables (instead
of constructing them) to produce the Z-parameter property: Zjri=1 or
Zright=1 but not both (with some refinments) — the exact definition of
chain rules.

Other than spurring me on to write this paper (for which I am most
grateful, and also for their citations) I must say that as far as the science
goes, I have not been influenced by their paper in any way.

10 Conclusions

I have described a method of encryption where the key is a chain-rule,
a special type of maximally chaotic 1d CA rule.

Information is encrypted by using a key to run the CA backward in
time. A secret message can be transmitted openly. The receiver has the
same key, and uses it to decipher the message by running the CA forward
in time by an equal number of steps. Anyone could construct their own
unique key instantaneously from a virtually unlimited source — its size
is about the square root of rule-space.

What is important to someone trying to crack an intercepted en-
crypted message, with DDLab available? The key itself is vital; data on
the CA, its neighbourhood k, and value-range v, is important — not ob-
vious from the key itself. The number of time-steps are useful, to know
when the forward run should stop.

Suppose both the raw message and the encryption where known,
could the key be deduced? I do not see how if the two are separated by
a number of time-steps, without knowing the intervening steps.
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In other security measures, the key itself could be encrypted. A mes-

sage could be doubly or multiply encrypted with more than one key.

Although these methods are available in DDLab, dedicated software

and hardware could be developed for the whole procedure to be fast,
hidden and automatic, and also to handle data streams in real time.
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