
Self-reproduction by glider collisions:
the beehive rule

Andrew Wuensche
Discrete Dynamics Lab, Santa Fe, NM 87506

andyw@cybermesa.com, www.ddlab.com

Abstract

We present a 3-value cellular automaton which supports self-
reproduction by glider collisions. The complex dynamics
emerge spontaneously in both 2d and 3d according to the 6-
neighbor, k-totalistic, “beehive” rule; the 2d dynamics on a
hexagonal lattice is examined in detail. We show how analo-
gous complex rules can be found, firstly by mutating a com-
plex rule to produce a family of related complex rules, and
secondly by classifying rule-space by input-entropy variance.
A variety of complex rules opens up the possibility of seeking
a common thread to distinguish those few rules from the rest:
an underlying principle of self-organization?

Introduction
Structure emerging by local interactions, self-reproduction
and evolution; these themes are central to understanding nat-
ural processes. A system’s complexity, according to this ap-
proach, relates to the number of levels on which it can be
usefully described (Wuensche, 1994; Wuensche, 1999).

The simplest artificial systems able to capture the essence
of these dynamical processes are cellular automata (CA),
where “cells” connected on a regular lattice synchronously
update their color by a logical function of their neighbor’s
colors. Just a tiny proportion of possible logics (complex
rules) allow higher levels of description, greater complexity,
to emerge from randomness.

In a movie of successive patterns on the lattice, recogniz-
able sub-patterns emerge; mobile structures (gliders 1) inter-
act, aggregate, make glider-guns, and gliders self-reproduce
or self-destruct by colliding.

In discrete CA everything can be precisely specified:
rules, connections, dynamics. So for a given complex rule
it should be possible to find causal links between the under-
lying “physics” and the ascending levels of emergent struc-
ture. We can also ask if there is a common thread that dis-
tinguishes those few rules that support complex dynamics
from the vast majority that do not: an underlying princi-

1“Gliders” and other terminology is taken from John Conway’s
famous Game-of-Life (Conway, 1982). Gliders can also be re-
garded as particles or waves

Figure 1: A snapshot of the beehive rule running on a 3d
(40x40x10) lattice. The k = 6 neighborhood is shown in figure 3.
The complex dynamics includes the spontaneous emergence of
gliders, self-reproduction by glider collisions and glider guns, anal-
ogous to the 2d case. Gliders move in the direction of their red
heads. Read this figure as if looking down into a shallow box.

ple of self-organization? That investigation would require a
good sample of complex rules, which is now accessible.

Of the variety of complex behaviors in CA, self-
reproduction (or self-replication) is perhaps the most prized
(von Neumann, 1966; Conway, 1982; Langton, 1984) and
provided the early motivation for ALife - but there have
been few further examples of non-trivial self-reproduction
until recent work by Antonio Lafusa (Bilott et al., 2003). He
has been searching among the multi-value k-totalistic rules
by genetic algorithm, using a fitness function of high input-
entropy variance (Wuensche, 1999) and related measures.

We have also looked at multi-value k-totalistic rule-space,
but for much smaller lookup tables than Lafusa’s. We have
limited both the value-range v (range of colors) and the
neighborhood k to keep our look-up tables short, and make
it easier to understand how specific entries relate to gliders.
We have results for v = 3 and k = 4 to k = 9, but we will
mainly describe results for k = 6 on a hexagonal 2d lattice.



Figure 2: A snapshot of the beehive rule running on a 2d hexago-
nal lattice. Gliders move in the direction of their red heads.

Complex rules are easily found in these smaller rule-
spaces by the classification methods in (Wuensche, 1999).
Small lookup tables also make it easier to study mutations.
It turns out that a large proportion of 1-value mutations are
quasi-neutral; they make little difference to the complex dy-
namics. Some mutations result in modified but equally in-
teresting complex dynamics. So mutations create families
of related complex rules. Of course, there are also sensitive
positions in the lookup table were a mutation completely dis-
rupts the complex dynamics.

This paper outlines the ideas and methods. The “bee-
hive” rule, which supports spontaneous self-reproduction by
glider collisions in both 2d and 3d, is examined in detail for
2d, and other examples are presented. Further details and
results can be found at www.ddlab.com (Wuensche, 2004).

k-totalistic rules
We will consider a subclass of CA rules, the k-totalistic rules
(Adamatzky, 1994; Bilott et al., 2003)2, where a cell’s up-
date depends only on the frequency of values (colors) in
its neighborhood, not their position (figure 4). Because of
this, the dynamics conserve symmetry; whatever happens in
one direction or reflection can also happen in all others. k-
totalistic lookup tables (kcode) are much smaller than the
general case, G = vk. The size L of the kcode is given by
L = (v+ k−1)!/(k!(v−1)!). For [v,k] = [3,6], L = 28, as
opposed to G = 729 . For greater [v,k], L increases rapidly.
If complex behavior can indeed be found for small [v,k], it
is of course worthwhile to think small and deal with short
kcode.

The beehive rule
The beehive rule is a multi-value k-totalistic rule with [v,k] =
[3,6]. The rule created the snapshots in figures 1 and 2, and
spontaneously self-organizes a basic glider which becomes

2Thanks to Antonio Lafusa for introducing this class of rules
to us. There is a prior attribution to (Adamatzky, 1994), and his
identical class “ATOT”.

Figure 3: The k = 6 neighborhoods of 3d, and 2d hex, CA.

kcode = 0022000220022001122200021210
kcode index

/ totals: 2s+1s+0s=k=6
/ / kcode

basic / / /
glider / / / mutations
--------- / 2_1_0 / 2___1___0

background-> 0: 0 0 6 -> 0 o c -
head+-> 1: 0 1 5 -> 1 0 - 0

2: 0 2 4 -> 2 - Sg cg
3: 0 3 3 -> 1 -+ G - G

out4 4: 0 4 2 -> 2 -+ - G G
out3 5: 0 5 1 -> 0 -+ G G -
out1 6: 0 6 0 -> 0 -+ G G -
side2-> 7: 1 0 5 -> 0 c c -
side1-> 8: 1 1 4 -> 2 - c c

side1+ 9: 1 2 3 -> 2 - cg G
10: 1 3 2 -> 2 -+ - G G

out2 11: 1 4 1 -> 1 -+ G - G
tail 12: 1 5 0 -> 1 -+ G - G
head-> 13: 2 0 4 -> 0 c c -

14: 2 1 3 -> 0 Gs c -
15: 2 2 2 -> 2 - gc gc
16: 2 3 1 -> 2 -+ - G G
17: 2 4 0 -> 0 -+ G G -
18: 3 0 3 -> 0 g c -
19: 3 1 2 -> 2 - c cg
20: 3 2 1 -> 2 - cg Gd
21: 3 3 0 -> 0 -+ G G -
22: 4 0 2 -> 0 G c -

center-> 23: 4 1 1 -> 0 g cg -
24: 4 2 0 -> 2 - cg G
25: 5 0 1 -> 2 - cg G
26: 5 1 0 -> 0 g gc -
27: 6 0 0 -> 0 G Gd -

key to mutations:
quasi-neutral G=25/56, wildcards -+ 10/28
G/g=gliders, G=same/similar dynamics,
g=weak/different, S=spirals, d=dense,
s=sparse, c=chaos, o=order, 0=all 0s

Figure 4: The lookup table (kcode) of the k-totalistic beehive rule,
showing its construction. This also shows the entries that make the
basic glider in figure 5, and the consequences of all 56 possible
1-value mutations, 25 of which are quasi-neutral.

the predominant structure in both a cubic 3d and hexagonal
2d lattice, with neighbors as in figure 3; the cell itself is not
included in its neighborhood.

The complex dynamics includes self-reproduction by
glider collisions (figure 6), and polymer-like gliders and
glider-guns (figures 6 and 7), but no permanently static pat-
terns. We chose the beehive rule for closer scrutiny because
its self-reproduction is especially clear in a live simulation.



Figure 5: The basic k = 6 2d glider moves in the direction of
its red head. Each cell that forms the glider and its surroundings
must blink to the correct color at the next time-step according to
the kcode. 12 cells are indicated which cover all cases because of
symmetries. The cells are controlled by 6 kcode entries in figure 4;
mutation of these disrupts the dynamics (except “center”).

Self-reproduction by glider collisions
We will look in some detail at the 2d dynamics, firstly
the outcomes of all possible, non-equivalent, types of col-
lisions between pairs of basic gliders, bearing in mind that
different direction on the hex lattice, and reflections, are
equivalent. Self-destruction, survival, conservation and self-
reproduction all occur, depending on the exact point and di-
rection of impact, summarized in the table below. Of the 21
collision types (8 head-on and 13 angular), 4 lead to self-
reproduction, where 2 gliders release either 4, 5, or 6 after
an interaction phase of several time-steps. Figure 6 shows
some examples. gliders

type no before after
self-destruction:. 2->0 10 20 0
one-survivor:..... 2->1 4 8 4
conservation:..... 2->2 3 6 6
self-reproduction: 2->4 1 2 4

2->5 1 2 5
2->6 2 4 12

------------
totals 21 42 31

The glider before/after ratio is 31/42, so if collision
types were equiprobable, and ignoring other interactions,
we would expect a high population density of gliders to de-
crease over time; though this is observed in the long run,
other structures and interactions make the dynamics more
complex. Gliders can crash into the transient patterns fol-
lowing collisions. An isolated red cell, from collision debris,
explodes to make 6 new gliders, so outside perturbations,
noise, would tend to repopulate the space with gliders; the
dynamics in general is robust to noise. Polymer-like gliders
made up of sub-units, also emerge.

Most notably, there are a variety of glider-guns3 that eject
from 1 to 4 glider streams in different directions.

Some examples of all of the above are given in figure 7.
These processes combine with self-reproduction to produce
an extremely complex hive of activity.

3Strictly speaking these are a cross between “glider-guns” and
“puffer trains” (Conway, 1982)

Figure 6: 4 of the 21 types of collisions between 2 gliders (time-
steps from the top). Conservation: (a) and (b). Self-reproduction:
(c) and (d). For all collisions types see (Wuensche, 2004).



Figure 7: (a) an exploding red cell makes 6 new gliders. (b,c,e)
polymer-like gliders made from subunits. (d) a glider that is also
present in (e) as a subunit, (e) a longer polymer-like glider made
of subunits from (b) and (d). (f) 5 examples of the various types
of glider-gun, which shoot from 1 to 4 glider streams. For more
examples see (Wuensche, 2004)

Figure 8: The result of a 1-value mutation to the beehive rule, at
index 2 (the output 2 is changed to 1). Glider activity is gradually
overwhelmed by spirals. A snapshot on a 2d (60×60) hex lattice

.

Mutations
The consequences of all possible 1-value mutations to the
beehive rule are tabulated in figure 4, and snapshots of all
can be found at (Wuensche, 2004).

The lookup table has 28 entries, and each can be changed
from its present value to two alternatives, giving 56 possible
minimal (1-value) mutations. The results of this experiment
(Wuensche, 2004) show that for 10 of the entries, chang-
ing to either alternative (20 mutations) is quasi-neutral; it
appears not to make much difference to the dynamics; ex-
periment confirms that these 10 entries can actually be wild-
cards. A further 5 mutations elsewhere, to just one value,
are also quasi-neutral, making 25/56. Multiple mutations in
these neutral regions needs examining.

On the other hand, mutations to any of the 6 sensitive
entries that maintain the basic glider destroy the dynamics
- with one exception - a mutation at index 23 (the glider’s
center) which sets the glider’s tail at the next time-step. This
mutation closes the glider’s tail (a black cell, value 2), but
otherwise conserves complex dynamics.

Another interesting mutation is at index 2, which causes
glider activity to be gradually overwhelmed by spirals, as
shown in figure 8.

The beehive kcode is set out below, indicating these mu-
tations, the 10 wildcards (+), and the 6 glider entries ( ˆ ),

index 23 2
| |

002200+220++200+++220++++210
ˆ ˆ ˆˆ ˆˆ

It would be possible then, to explore the family of related
rules by gradually mutating away from the beehive rule, and
entering into the network of related complex rules in rules-
space.

Finding complex rules
To find new complex rules from scratch (without mutating
old ones), and in particular rules that support gliders, we use



Figure 9: About 15800 [v,k] = [3,6] k-totalistic rules classified by
input-entropy variance.

the method for automatically classifying 1d rule-space by
input-entropy variance (Wuensche, 1999), but which applies
equally well to k-totalistic rules, and to 2d and 3d.

We track how frequently the different entries in the
kcode (as in figure 4) are actually looked up, once the
CA has settled into its typical behavior. The Shannon en-
tropy of this frequency distribution, the input-entropy S,
at time-step t, for one time-step (w=1), is given by St =

−

∑L−1
i=0

(

Qt
i

n × log
(

Qt
i

n

))

, where Qt
i is the lookup frequency

of neighborhood i at time t, L is the kcode size, and n is
the size of the CA. In practice the measures are smoothed
by being averaged over a moving window of w = 10 time-
steps. The measures are started only after 200 time-steps,
and are then taken for a further 300 time-steps. The 2d CA
100× 100 is run from a sample of 5 random initial states.
The sizes of these parameters can be varied, of course.

Average measures are recorded for (a) entropy variance
(or standard deviation), and (b) the mean entropy. This is
repeated for a sample of randomly chosen rules. The sam-
ple is then sorted by both (a) and (b), and data plotted as in
figure 9, The plot classifies rule-space between chaos, order
and complexity. Individual rules can be selected by various

Figure 10: Complex rules on a 60×60 hexagonal lattice.

methods, including directly from the plot, to check their be-
haviors.

The basic argument is that if the entropy continues to vary
in settled dynamics, moving both up and down, then some
kind of self-organizing collective behavior must be unfold-
ing. This might include competing zones of order and chaos,
or two differnt types of chaos, as well as glider dynamics.

In the case of the beehive rule and other glider rules, at any
given moment there may be a bias in the dynamics towards
a preponderance of gliders (low entropy) or post-collision
transient patterns (high entropy). The lattice (or a patch un-
dergoing the analysis) must not be too large in relation to the
scale of possible emergent structures, otherwise the effects
would cancel out. By contrast, stable/high entropy indicates
chaos (most rules); stable/low entropy indicates order - in
both cases the entropy variance is low.

Other complex rules
In figures 10 and 11, we show 4 examples of [v,k] = [3,6]
complex rules, found independently by the input-entropy
variance method (more can be seen at (Wuensche, 2004),
also for k = 7,8,9). The basic beehive glider is sometimes
present, but we also see different gliders and complex struc-



Figure 11: Complex rules on a 60×60 hexagonal lattice.
(b) note 2 large slow moving gliders (period=3), their motion is
indicated by arrows

tures, which we have not yet examined in detail. The ex-
ample in figure 11(b) has a remarkably complex glider and
glider-gun.

In these examples, the kcode has been transformed with a
value-swapping algorithm to an equivalent kcode, but with
the colors (values) made to correspond with the beehive rule,
where the background value is 0 (green), the leading head of
gliders is 1 (red). This allows the different kcode tables to be
compared to look for common biases. Below we compare
the kcodes of our 4 examples with the beehive rule. The
wildcards(+) and glider entries ( ˆ ) are indicated.

26 23 frequency of values
| | + ++ +++ ++++ 2__1__0

0022000220022001122200021210 11 4 13
ˆ ˆ ˆˆ ˆˆ

2200021000222201110201212210 - 10a 11 7 10
0222200220000200100201102110 - 10b 9 5 14
0200001120100200002200120110 - 11a 6 6 16
0200202022222200012100002100 - 11b 11 3 14

| | || ||
2 4 34 34 - matches

We can see that there is a high correlation with glider en-
tries, except for index 23 which we have already noted is

exceptional; a 2 at index 23 closes the basic glider’s tail, and
a 2 at index 26 keeps it closed (a black cell, value 2). There
is also a correlation with the frequencies of values.

If a common thread or bias in kcodes can be identi-
fied among these and other complex rules, which distin-
guishes them from the vast majority of rules-space, then this
could become the basis for an underlying principle of self-
organization in k-totalistic cellular automata.

Discussion
There is a network of complex rules in k-totalistic rule-
space, connected by mutations, where large scale collective
behaviors emerge spontaneously. The complex dynamics in-
cludes self-reproduction by glider collisions, polymer-like
gliders, glider guns, and possibly other structures and inter-
actions. This implies higher levels of description beyond the
underlying “physics”, the kcode. The levels could conceiv-
ably unfold without limit given sufficient time and space; the
number of these emergent levels is our qualitative measure
of complexity.

Some questions arise; what is the mechanism of self-
reproduction? how do glider-guns self-assemble? are these
systems computation universal? how does complexity scale
with greater v or k? how do the various complex rules re-
late? is there an underlying principle of self-organization?
and what is it?

Discrete Dynamics Lab
The software used to research and produce this paper was multi-
value DDLab, in which the dynamics can be seen live, and the
rules are provided. It is available at www.ddlab.com.
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